Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130799, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479663

ABSTRACT

The 3-quinuclidinone reductase plays an irreplaceable role in the biopreparation of (R)-3-quinuclidinol, an intermediate vital for synthesis of various pharmaceuticals. Thermal robustness is a critical factor for enzymatic synthesis in industrial applications. This study characterized a new 3-quinuclidinone reductase, named SaQR, with significant thermal stability. The SaQR was overexpressed in a GST-fused state, and substrate and cofactor screening were conducted. Additionally, three-dimensional structure prediction using AlphaFold and analysis were performed, along with relevant thermostability tests, and the evaluation of factors influencing enzyme activity. The findings highlight the remarkable thermostability of SaQR, retaining over 90% of its activity after 72 h at 50°C, with an optimal operational temperature of 85°C. SaQR showed typical structural traits of the SDR superfamily, with its cofactor-determining residue being aspartic acid, conferring nicotinamide adenine dinucleotide (NAD(H)) preference. Moreover, K+ and Na+, at a concentration of 400 mM, could significantly enhance the activity, while Mg2+ and Mn2+ only display inhibitory effects within the tested concentration range. The findings of molecular dynamics simulations suggest that high temperatures may disrupt the binding of enzyme to substrate by increasing the flexibility of residues 205-215. In conclusion, this study reports a novel 3-quinuclidinone reductase with remarkable thermostability.


Subject(s)
Oxidoreductases , Quinuclidines , Oxidoreductases/metabolism , Quinuclidines/pharmacology , Quinuclidines/metabolism , NAD/metabolism , Molecular Dynamics Simulation , Enzyme Stability
2.
Small ; : e2310226, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308112

ABSTRACT

Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT , where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.

3.
Nanomaterials (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38392696

ABSTRACT

The functionalized graphene oxide (GO)-based composites as fillers added into organic coatings are desired for realizing the longstanding corrosion protection of carbon steel. Here, the pH-responsive two-dimensional/three-dimensional (2D/3D) GO-based composite (ZIF-90-AAP/GO) was developed by environmentally friendly corrosion inhibitor 4-aminoantipyrine (AAP) anchored on the in situ growth of zeolite imidazolate framework-90 (ZIF-90) on the GO surface (ZIF-90/GO) through the Schiff base reaction. The active filler (ZIF-90-AAP/GO) was incorporated into an epoxy coating (EP) to obtain a high-performance self-healing coating on the surface of carbon steel. ZIF-90-AAP can greatly improve dispersion and compatibility of GO in EP. The low-frequency impedance modulus of ZIF-90-AAP/GO-EP can still reach up to 1.35 × 1010 Ω⋅cm2 after 40 days, which is about three orders of magnitude higher than that of the EP containing GO (GO-EP) relying on its passive and active corrosion protection. Meanwhile, ZIF-90-AAP/GO-EP exhibits excellent self-healing performance. The self-healing rate of ZIF-90-AAP/GO changes from negative to positive after 24 h, which results from the effective corrosion inhibition activity of ZIF-90-AAP for carbon steel based on the pH-triggered controlled release of AAP. The developed pH-responsive 2D/3D GO-based composite coating is very attractive for the corrosion protection of carbon steel.

4.
Cell Prolif ; : e13607, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353178

ABSTRACT

To investigate the role and mechanism of FBLN1 in the osteogenic differentiation and bone regeneration by using umbilical cord mesenchymal stem cells (WJCMSCs). We found that FBLN1 promoted osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. It was showed that there was an m6 A methylation site in 3'UTR of FBLN1 mRNA, and the mutation of the m6 A site enhanced the stability of FBLN1 mRNA, subsequently fostering the FBLN1 enhanced osteogenic differentiation of WJCMSCs. YTHDF2 was identified as capable of recognizing and binding to the m6 A site, consequently inducing FBLN1 instability and repressed the osteogenic differentiation of WJCMSCs. Meanwhile, miR-615-3p negatively regulated FBLN1 by binding FBLN1 3'UTR and inhibited the osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. Then, we discovered miR-615-3p was found to regulate the functions of FBLN1 facilitated by YTHDF2 through an m6 A-miRNA regulation mechanism. We demonstrated that FBLN1 is critical for regulating the osteogenic differentiation potentials of WJCMSCs and have identified that miR615-3p mediated the decay of FBLN1 mRNA which facilitated by m6 A reading protein YTHDF2. This provided a novel m6 A-miRNA epigenetic regulatory pattern for MSC regulation and bone regeneration.

5.
Protein Pept Lett ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38288819

ABSTRACT

BACKGROUND: 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH). METHODS: The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2. RESULTS: Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme's activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity. CONCLUSION: We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.

6.
Immunity ; 57(1): 106-123.e7, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38159573

ABSTRACT

When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin ß1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.


Subject(s)
Kidney Calculi , Kidney , Mice , Animals , Macrophages
7.
Mol Psychiatry ; 28(9): 3795-3805, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37658228

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with a strong genetic liability. Despite extensive studies, however, the underlying pathogenic mechanism still remains elusive. In the present study, we identified a homozygous mutation in the intron 1 of Wnt1 via large-scale screening of ASD risk/causative genes and verified that this mutation created a new splicing donor site in the intron 1, and consequently, a decrease of WNT1 expression. Interestingly, humanized rat models harboring this mutation exhibited robust ASD-like behaviors including impaired ultrasonic vocalization (USV), decreased social interactions, and restricted and repetitive behaviors. Moreover, in the substantia nigra compacta (SNpc) and the ventral tegmental area (VTA) of mutant rats, dopaminergic (DAergic) neurons were dramatically lost, together with a comparable decrease in striatal DAergic fibers. Furthermore, using single-cell RNA sequencing, we demonstrated that the decreased DAergic neurons in these midbrain areas might attribute to a shift of the boundary of the local pool of progenitor cells from the hypothalamic floor plate to the midbrain floor plate during the early embryonic stage. Moreover, treatments of mutant rats with levodopa could attenuate the impaired USV and social interactions almost completely, but not the restricted and repetitive behaviors. Our results for the first time documented that the developmental loss of DAergic neurons in the midbrain underlies the pathogenesis of ASD, and that the abnormal progenitor cell patterning is a cellular underpinning for this developmental DAergic neuronal loss. Importantly, the effective dopamine therapy suggests a translational significance in the treatment of ASD.


Subject(s)
Autism Spectrum Disorder , Dopaminergic Neurons , Animals , Rats , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Introns , Mesencephalon/metabolism , Substantia Nigra/metabolism , Ventral Tegmental Area/metabolism
8.
Foods ; 12(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37297424

ABSTRACT

Broken eggs can be harmful to human health but are also unfavorable for transportation and production. This study proposes a video-based detection model for the real-time detection of broken eggs regarding unwashed eggs in dynamic scenes. A system capable of the continuous rotation and translation of eggs was designed to display the entire surface of an egg. We added CA into the backbone network, fusing BiFPN and GSConv with the neck to improve YOLOv5. The improved YOLOV5 model uses intact and broken eggs for training. In order to accurately judge the category of eggs in the process of movement, ByteTrack was used to track the eggs and assign an ID to each egg. The detection results of the different frames of YOLOv5 in the video were associated by ID, and we used the method of five consecutive frames to determine the egg category. The experimental results show that, when compared to the original YOLOv5, the improved YOLOv5 model improves the precision of detecting broken eggs by 2.2%, recall by 4.4%, and mAP:0.5 by 4.1%. The experimental field results showed an accuracy of 96.4% when the improved YOLOv5 (combined with ByteTrack) was used for the video detection of broken eggs. The video-based model can detect eggs that are always in motion, which is more suitable for actual detection than a single image-based detection model. In addition, this study provides a reference for the research of video-based non-destructive testing.

9.
Stem Cells Int ; 2023: 8992284, 2023.
Article in English | MEDLINE | ID: mdl-37323630

ABSTRACT

Mesenchymal stem cells (MSCs) have been considered a potential method for the regeneration of tooth and maxillofacial bone defects based on the multidirectional differentiation characteristics of MSCs. miRNAs have been found to play a key role in the differentiation of MSCs. However, its effectiveness still needs to be improved, and its internal mechanism is still unclear. In the present study, our data discovered that the knockdown of miR-196b-5p promoted alkaline phosphatase (ALP) activity assay, mineralization in vitro, and expressions of osteo/odontogenic differentiation markers DSPP and OCN and enhanced in vivo osteo/odontogenic differentiation of stem cells of the apical papilla (SCAPs). Mechanistically, the results indicated that METTL3-dependent N6-methyladenosine (m6A) methylation inhibited miR-196b-5p maturation by the microprocessor protein DGCR8. Moreover, miR-196b-5p indirectly negatively regulates METTL3 in SCAPs. Then, METTL3 was found to strengthen the ALP activity assay, mineralization, and expressions of osteo/dentinogenic differentiation markers. Taken together, our findings highlight the critical roles of the METTL3-miR-196b-5p signaling axis in an m6A-dependent manner in osteo/odontogenic differentiation of SCAPs, identifying some potential targets for tooth and maxillofacial bone defects.

10.
Stem Cell Res Ther ; 14(1): 47, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941706

ABSTRACT

BACKGROUND: Because of the low regeneration efficiency and unclear underlying molecular mechanism, tooth regeneration applications are limited. In this study, we explored the influence of residual periodontal ligament on the dentin regeneration potential of dental pulp stem cells (DPSCs) in the jaw. METHODS: To establish a tooth regeneration model, the incisors of New Zealand white rabbits were extracted while preserving residual periodontal ligament, followed by the implantation of DPSCs. After 3 months, micro-computed tomography (micro-CT), stereomicroscopy and scanning electron microscopy (SEM) were used to observe the volume, morphology and microstructure of regenerated tissue. Histological staining and immunostaining analyses were used to observe the morphological characteristics and expression of the dentin-specific proteins DMP1 and DSPP. To explore the mechanism, DPSCs and periodontal ligament stem cells (PDLSCs) were cocultured in vitro, and RNA was collected from the DPSCs for RNA-seq and bioinformatic analysis. RESULTS: The results of micro-CT and stereomicroscopy showed that the number of sites with regeneration and the volume of regenerated tissue in the DPSCs/PDL group (6/8, 1.07 ± 0.93 cm3) were larger than those in the DPSCs group (3/8, 0.23 ± 0.41 cm3). The results of SEM showed that the regenerated dentin-like tissue in the DPSCs and DPSCs/PDL groups contained dentin tubules. Haematoxylin and eosin staining and immunohistochemical staining indicated that compared with the DPSCs group, the DPSCs/PDL group showed more regular regenerated tissue and higher expression levels of the dentin-specific proteins DMP1 and DSPP (DMP1: P = 0.02, DSPP: P = 0.01). RNA-seq showed that the coculture of DPSCs with PDLSCs resulted in the DPSCs differentially expressing 427 mRNAs (285 upregulated and 142 downregulated), 41 lncRNAs (26 upregulated and 15 downregulated), 411 circRNAs (224 upregulated and 187 downregulated), and 19 miRNAs (13 upregulated and 5 downregulated). Bioinformatic analysis revealed related Gene Ontology function and signalling pathways, including extracellular matrix (ECM), tumour necrosis factor (TNF) signalling and chemokine signalling pathways. CONCLUSIONS: Residual periodontal ligament in the extraction socket promotes the dentin regeneration potential of DPSCs in the jaw. RNA-seq and bioinformatic analysis revealed that ECM, TNF signalling and chemokine signalling pathways may represent the key factors and signalling pathways.


Subject(s)
Periodontal Ligament , Tooth , Rabbits , Animals , X-Ray Microtomography , Tooth/metabolism , Proteins/metabolism , Dentin/metabolism , Chemokines/metabolism , Dental Pulp/metabolism , Cells, Cultured , Cell Differentiation
11.
ACS Chem Neurosci ; 14(5): 829-838, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36749171

ABSTRACT

Amyloid-ß (Aß) is the core constituent protein of senile plaques, which is one of the key pathological hallmarks of Alzheimer's disease (AD). Here we describe the design, synthesis, and evaluation of coumarin-derived small molecule fluorophores for Aß imaging. By embedding the aromatic coumarin framework into π bridge of a push-pull chromophore, a novel fluorescence probe XCYC-3 applicable to efficient Aß recognition was discovered. XCYC-3 displays higher fluorescent enhancement for aggregated Aß than monomeric Aß, and possesses good blood-brain barrier permeability. In vitro staining and in vivo imaging studies demonstrated that XCYC-3 could efficiently recognize Aß plaques in the brain of AD transgenic mice. These results suggest that XCYC-3 is a promising fluorescence imaging agent for Aß, which might provide important clues for the future development of potent NIR fluorescent probes for Aß diagnosis.


Subject(s)
Alzheimer Disease , Fluorescent Dyes , Mice , Animals , Fluorescent Dyes/metabolism , Plaque, Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Mice, Transgenic , Coumarins
12.
Oral Dis ; 29(7): 2827-2836, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36579641

ABSTRACT

OBJECTIVES: Stem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation. MATERIALS AND METHODS: Short hairpin RNAs and full-length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression. Western blotting, real-time RT-PCR, alizarin red staining, and scratch migration assays were used to study the role of KDM4D and the ribosomal protein encoded by RPS5 in SCAPs. RNA microarray, chromatin Immunoprecipitation (ChIP), and co-immunoprecipitation (Co-IP) assays were performed to explore the underlying molecular mechanisms. RESULTS: KDM4D enhanced the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. The microarray results revealed that 88 mRNAs were differentially expressed in KDM4D-overexpressed SCAPs. ChIP results showed knock-down of KDM4D increased the level of H3K9me2 and H3K9me3 in CNR1 promoter region. There were 37 possible binding partners of KDM4D. KDM4D was found to combine with RPS5, which also promoted the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. CONCLUSIONS: KDM4D promoted the osteo/dentinogenic differentiation and migration potential of SCAPs in combination with RPS5, which provides a therapeutic clue for improving SCAPs-based dental tissue regeneration.


Subject(s)
Dental Pulp , Jumonji Domain-Containing Histone Demethylases , Regeneration , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Papilla/metabolism , Dental Pulp/metabolism , Osteogenesis/genetics , RNA, Small Interfering , Stem Cells , Humans , Jumonji Domain-Containing Histone Demethylases/genetics
13.
Cell Tissue Bank ; 24(1): 231-239, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35939161

ABSTRACT

Evidences have showed stem cell mediated tissue regeneration is a promising method for the treatment of periodontitis. Insulin-like growth factor binding proteins-5 (IGFBP5) is a member of the insulin growth factor (IGFs) family and plays a regulatory role in cell proliferation and differentiation. Our previous study showed that IGFBP5 can promote osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and enhance periodontal tissue regeneration mediated by PDLSCs. However, the function of IGFBP5 in the process of PDLSCs senescence remains unclear. The present study showed IGFBP5 mRNA level was highly expressed in passage-induced aged PDLSCs cells. IGFBP5 knockdown decreased the ratio of senescence associated ß-galactosidase (SA-ß-Gal) positive cells, enhanced the activity of TERT, and down-regulated the expression levels of P16, P21, P53 mRNA and protein. Overexpression of IGFBP5 increased the ratio of SA-ß-Gal positive staining PDLSCs, decreased the activity of telomerase TERT, and up-regulated the expression levels of P16, P21, P53 mRNA and protein related to PDLSCs senescence. In conclusion, IGFBP5 can accelerate the senescence of PDLSCs, indicating the potential target for maintaining the "young state" of stem cells.


Subject(s)
Insulin-Like Growth Factor Binding Protein 5 , Periodontal Ligament , Periodontal Ligament/metabolism , Insulin-Like Growth Factor Binding Protein 5/metabolism , Osteogenesis/genetics , Tumor Suppressor Protein p53/metabolism , Cells, Cultured , Stem Cells , Cell Differentiation , Cell Proliferation , RNA, Messenger/metabolism
14.
Cells ; 11(22)2022 11 17.
Article in English | MEDLINE | ID: mdl-36429077

ABSTRACT

Plants absorb nitrogen from the soil using ammonium transporters (AMTs). Plants can precisely regulate AMT1;3 levels using sophisticated regulatory systems, ensuring adequate nitrogen uptake without hazardous ammonium production. Here, we demonstrated that ubiquitylation can contribute to AMT1;3 degradation under high ammonium stress. Using the ubiquitin site mutant AMT1;3K75R,K233R-EGFP, we demonstrated that the loss of ubiquitination affects the dynamic characteristics of AMT1;3 proteins on the plasma membrane and markedly inhibits the endocytosis of AMT1;3 proteins under high ammonium stress. AMT1;3K75R,K233R-EGFP plants also showed inhibition of protein degradation that targets the vesicular pathway after being exposed to high levels of ammonium. Our findings showed that the dynamic properties, endocytosis, and vesicle trafficking pathways of AMT1;3 proteins are altered in AMT1;3K75R,K233R-EGFP under high ammonium conditions.


Subject(s)
Ammonium Compounds , Arabidopsis , Cation Transport Proteins , Ammonium Compounds/pharmacology , Ammonium Compounds/metabolism , Arabidopsis/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nitrogen/metabolism , Ubiquitination
15.
J Chromatogr A ; 1685: 463642, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36395248

ABSTRACT

Codonopsis Radix (CR) is a plant that is important in the practice of traditional Chinese medicine (TCM). The Chinese Pharmacopoeia 2020 records dried roots prepared from three varieties of Campanulaceae plants under the designation CR ("Dang-shen" in Chinese), including Codonopsis pilosula (Franch.) Nannf (C. pilosula), Codonopsis pilosula Nannf.var.modesta (Nannf.) L81. T. Shen (C. pilosula var. modesta) and Codonopsis tangshen Oliv (C. tangshen). As major constituents of CR, oligosaccharides might contribute to its clinical efficacy except for other known active compounds, yet the differences in the oligosaccharide profiles of these three varieties of CR remain incompletely understood. In the present study, 135 samples from these different CR varieties were harvested, and oligosaccharide fingerprints for these samples were characterized via HPLC-ELSD, with 19 common peaks being matched. Oligosaccharides were further identified through the combination of electrospray ionization MS/MS (ESI-MS/MS) with nuclear magnetic resonance (NMR). Principal component analysis and linear discriminant analysis (LDA) approaches were then used to compare the oligosaccharide profiles of these three CR varieties. These analyses ultimately revealed that CR was compared with principal component analysis (PCA) and linear discriminant (LDA) methods. The analyses ultimately revealed that these CR samples contained high levels of inulin- and levan-type fructooligosaccharides (FOS), with variations in the relative levels of these FOS compounds among the three analyzed CR varieties. Through the combined analysis of oligosaccharide fingerprints and LDA results, it was possible to differentiate among these CR varieties, with an accurate classification rate of 96.3% and a cross-validation rate of 95.6%. Together, these results highlight a valuable approach to the classification and identification of different CR varieties.


Subject(s)
Codonopsis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Multivariate Analysis , Oligosaccharides
16.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232394

ABSTRACT

To find novel herbicidal compounds with high activity and broad spectrum, a series of phenylpyridine moiety-containing α-trifluoroanisole derivatives were designed, synthesized, and identified via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). Greenhouse-based herbicidal activity assays revealed that compound 7a exhibited > 80% inhibitory activity against Abutilon theophrasti, Amaranthus retroflexus, Eclipta prostrate, Digitaria sanguinalis, and Setaria viridis at a dose of 37.5 g a.i./hm2, which was better than fomesafen. Compound 7a further exhibited excellent herbicidal activity against Abutilon theophrasti and Amaranthus retroflexus in this greenhouse setting, with respective median effective dose (ED50) values of 13.32 and 5.48 g a.i./hm2, both of which were slightly superior to fomesafen (ED50 = 36.39, 10.09 g a.i./hm2). The respective half-maximal inhibitory concentration (IC50) for compound 7a and fomesafen when used to inhibit the Nicotiana tabacum protoporphyrinogen oxidase (NtPPO) enzyme, were 9.4 and 110.5 nM. The docking result of compound 7a indicated that the introduction of 3-chloro-5-trifluoromethylpyridine and the trifluoromethoxy group was beneficial to the formation of stable interactions between these compounds and NtPPO. This work demonstrated that compound 7a could be further optimized as a PPO herbicide candidate to control various weeds.


Subject(s)
Amaranthus , Herbicides , Benzamides/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Plant Weeds , Protoporphyrinogen Oxidase/chemistry , Structure-Activity Relationship , Nicotiana
17.
Cell Tissue Res ; 390(2): 245-260, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35925405

ABSTRACT

The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs' osteogenic potential and sheet-derived ECM deposition is the key to promoting its application. In this study, we found that inhibition or overexpression of miR-196a-5p led to a decline or enhancement, respectively, in the alkaline phosphatase (ALP) activity, mineralization, and the levels of osteogenic markers, Osteocalcin (OCN), Dentin Matrix Protein 1 (DMP1), Bone Sialoprotein (BSP), and Dentin Sialophosphoprotein (DSPP) of Wharton's jelly of umbilical cord stem cells (WJCMSCs) in vitro. Moreover, the 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) analysis revealed inhibition of the WJCMSCs' proliferative ability upon miR-196a-5p overexpression. Characterization of the sheet formation by picrosirius red and Masson staining indicated that miR-196a-5p overexpression significantly promoted the collagen content in whole WJCMSC sheet-derived ECM. Furthermore, micro-CT and histopathology results indicated that the miR-196a-5p-overexpressed WJCMSC sheets significantly promoted new bone regeneration and rat calvarial bone defect closure 12 weeks following transplantation. The mRNA microarray analysis of miR-196a-5p-overexpressed WJCMSCs revealed 959 differentially expressed genes (DEGs) (34 upregulated and 925 downregulated). Moreover, 241 genes targeted by miR-196a-5p were predicted by using miRNA function websites of which only 19 predicted genes were consistent with the microarray revealed DEGs. Hence, one unrevealed downregulated DEG Serpin Family B Member 2 (SERPINB2) was investigated. And the deletion of SERPINB2 enhanced the ALP activity and mineralization of WJCMSCs in vitro. In conclusion, our study found that miR-196a-5p, as a key regulator, could repress the proliferation tendency, while stimulating osteogenic ability and WJCMSC sheet-derived ECM deposition, thus promoting new bone formation and rat calvarial bone defect closure. Furthermore, SERPINB2 is a key downstream gene involved in the miR-196a-5p-promoted WJCMSC osteogenesis.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Wharton Jelly , Animals , Rats , Cell Differentiation/genetics , Cells, Cultured , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Skull/metabolism , Stem Cells/metabolism , Umbilical Cord
18.
Int J Biol Macromol ; 219: 159-165, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35934074

ABSTRACT

3α-HSDHs have a crucial role in the bioconversion of steroids, and have been widely applied in the detection of total bile acid (TBA). In this study, we report a novel NADP(H)-dependent 3α-HSDH (named Sc 3α-HSDH) cloned from the intestinal microbiome of Ursus thibetanus. Sc 3α-HSDH was solubly expressed in E. coli (BL21) as a recombinant glutathione-S-transferase (GST)-tagged protein and freed from its GST-fusion by cleavage using the PreScission protease. Sc 3α-HSDH is a new member of the short-chain dehydrogenases/reductase superfamily (SDRs) with a typical α/ß folding pattern, based on protein three-dimensional models predicted by AlphaFold. The best activity of Sc 3α-HSDH occurred at pH 8.5 and the temperature optima was 55 °C, indicating that Sc 3α-HSDH is not an extremozyme. The catalytic efficiencies (kcat/Km) of Sc 3α-HSDH catalyzing the oxidation reaction with the substrates, glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA), were 183.617 and 34.458 s-1 mM-1, respectively. In addition, multiple metal ions can enhance the activity of Sc 3α-HSDH when used at concentrations ranging from 2 % to 42 %. The results also suggest that the metagenomic approach is an efficient method for identifying novel enzymes.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Bile Acids and Salts , Escherichia coli/genetics , Escherichia coli/metabolism , Glutathione , Glycochenodeoxycholic Acid , Hydroxysteroid Dehydrogenases/metabolism , Ions , NADP , Peptide Hydrolases , Recombinant Proteins/metabolism , Transferases , Ursidae/metabolism
19.
Protein Pept Lett ; 29(11): 946-953, 2022.
Article in English | MEDLINE | ID: mdl-35996269

ABSTRACT

BACKGROUND: 3α-Hydroxysteroid dehydrogenase (3α-HSDH) reversibly catalyzes the oxidation of the C3-hydroxyl group of steroids, and has been used in clinical applications to detect serum total bile acid (TBA). In this study, A novel 3α-HSDH (called Sb 3α-HSDH) was expressed and characterized. METHODS: Plasmid pGEX-6p-1 was used for the expression of Sb 3α-HSDH in Escherichia coli (BL21), and activities were determined by recording the change in absorbance at 340 nm with/without adding of ions. A prediction of its three-dimensional structure was performed with AlphaFold. RESULTS: The substrate specificity test indicated that Sb 3α-HSDH is NAD(H)-dependent and has no activity with NADP(H). We also showed that Sb 3α-HSDH can catalyze the oxidation reaction of GCDCA and GUDCA with catalytic efficiencies (kcat/Km) of 29.060 and 45.839 s-1mM-1, respectively. The temperature dependence of catalysis suggests that Sb 3α-HSDH is a member of the mesophilic enzymes with its best activity at about 45 °C. The optimum pH of Sb 3α-HSDH was found to be between pH 8.0 and 9.0. The effect of ions, including K+, Mg2+, Na+, Cu2+, Mn2+, Fe2+, and Fe3+ on enzyme activity was evaluated and K+ and Mg2+ were found to enhance the activity of Sb 3α-HSDH by about 20% at concentrations of 200 mM and 50 mM, respectively. The well-conserved GIG motif, the active sites, and the Rossmann fold in the threedimensional structure indicate that Sb 3α-HSDH belongs to the "classical" type of SDR superfamily. CONCLUSION: We expressed and characterized a novel NAD(H)-dependent 3α-HSDH with typical threedimensional characteristics of the SDRs that exhibited substrate specificity to GCDCA and GUDCA.


Subject(s)
Hydroxysteroid Dehydrogenases , NAD , NAD/metabolism , Hydroxysteroid Dehydrogenases/chemistry , Substrate Specificity , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Ions
20.
Small Methods ; 6(7): e2200411, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35680608

ABSTRACT

The ever-growing market of portable electronics and electric vehicles has spurred extensive research for advanced lithium-ion batteries (LIBs) with high energy density. High-capacity alloy- and conversion-type anodes are explored to replace the conventional graphite anode. However, one common issue plaguing these anodes is the large initial capacity loss caused by the solid electrolyte interface formation and other irreversible parasitic reactions, which decrease the total energy density and prevent further market integration. Prelithiation becomes indispensable to compensate for the initial capacity loss, enhance the full cell cycling performance, and bridge the gap between laboratory studies and the practical requirements of advanced LIBs. This review summarizes the various emerging anode and cathode prelithiation techniques, the key barriers, and the corresponding strategies for manufacturing-compatible and scalable prelithiation. Furthermore, prelithiation as the primary Li+ donor enables the safe assembly of new-configured "beyond LIBs" (e.g., Li-ion/S and Li-ion/O2 batteries) and high power-density Li-ion capacitors (LICs). The related progress is also summarized. Finally, perspectives are suggested on the future trend of prelithiation techniques to propel the commercialization of advanced LIBs/LICs.

SELECTION OF CITATIONS
SEARCH DETAIL
...